- More Parameters? No Thanks! [43.7]
多言語ニューラルマシン翻訳MNMTにおけるモデル容量と負の干渉の長期的問題について検討する。 我々はネットワークプルーニング手法を用いて、トレーニングされたMNMTモデルからパラメータの50-70%をプルーニングすると、BLEUスコアの0.29-1.98ドロップしか得られないことを観察する。 我々は,MNMTの冗長なパラメータを反復的に訓練し,多言語性を維持しながらバイリンガル表現を改善する新しい適応戦略を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Tue, 20 Jul 2021 17:04:15 GMT)- マルチリンガルなニューラル機械翻訳には冗長なパラメータが多い。著者らはマルチリンガルモデルから50%パラメータを削減したのちに、冗長だったweightを活用するトレーニングを行うことで削減前のモデルからBLEUスコアを改善できたとのこと。
- コード等はhttps://github.com/zeecoder606/PF-Adaptationで公開予定とのこと。