Understanding LLMs: A Comprehensive Overview from Training to Inference

  • Understanding LLMs: A Comprehensive Overview from Training to Inference [52.7]
    大規模言語モデルの低コストなトレーニングと展開は、将来の開発トレンドを表している。 トレーニングに関する議論には、データ前処理、トレーニングアーキテクチャ、事前トレーニングタスク、並列トレーニング、モデル微調整に関連する関連コンテンツなど、さまざまな側面が含まれている。 推論の面では、モデル圧縮、並列計算、メモリスケジューリング、構造最適化などのトピックを取り上げている。
    論文  参考訳(メタデータ)   (Thu, 4 Jan 2024 02:43:57 GMT)
  • LLMの作り方を一歩踏み込んで知りたいときによい資料。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です