On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons
On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons [37.3] 多言語デコーダを用いた言語モデル(PLM)のニューロンレベルの内部挙動の解析 言語固有のニューロンは、言語間でわずかに重なり(5%)、ユニークであることを示す。 推論中に各モデルにおける全ニューロンの1%未満をタンパし、少数の言語特異的ニューロンとのタンパリングがテキスト生成におけるターゲット言語発生の確率を劇的に変化させることを実証した。 論文参考訳(メタデータ) (Wed, 03 Apr 2024 03:37:22 GMT)
PLMにおける多言語性の分析、「The experimental results demonstrate that language-specific neurons mainly exist in the first and last few layers, regardless of the language, model size, and model variants.」というFindingsはLanguage-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models – arXiv最新論文の紹介 (devneko.jp)など他の結果と整合的であるように思える。Controlling Language-specific Neuronsでの「In other words, the desired language could be generated by intentionally igniting target neurons.」は面白い。