LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.4] 本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。 本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。 法発見と分子設計における枠組みの有効性を実証するための実験を行った。 論文参考訳(メタデータ) (Thu, 16 May 2024 03:04:10 GMT)
物理的シミュレーションとLLMを組みあわせ科学的発見をおこなうためのフレームワークの提案。「In conclution, we present Scientific Generative Agent, a bilevel optimization framework: LLMs serve as knowledgeable and adaptable thinkers, formulating scientific solutions like physics equations or molecule structures; concurrently, simulations operate as platforms for experimentation, offering observational feedback and optimizing continuous components like physical parameters.」と、LLMが人間的役割を担っている。