JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models

  • JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models [110.5]
    既存の研究は、事前学習のための大規模な数学関連のテキストを収集したり、巨大な数学問題を合成するために強力なLLMに依存している。 そこで本研究では,数学問題合成のための小さなLLMを効率的に学習し,高品質な事前学習データを効率的に生成する手法を提案する。 我々は、GPT-4 API 9.3k回の呼び出しと4.6Bデータの事前トレーニングのみを必要とする、JuZhang3.0モデルの事前トレーニングに600万の数学問題を合成する。
    論文  参考訳(メタデータ)   (Thu, 23 May 2024 09:43:19 GMT)
  • 数学問題について高品質な合成データを構築し小規模LLMをfinetuning、優れた性能を達成とのこと。商用ではライセンス的に難しい場合も多いが有望なアプローチであると思う。実験でJiuZhang3.0-8B (LLaMA-3-8Bベース) と7B (Mistral-7Bベース)を構築していて早速Llama 3を取り込んでいるのがすごい&両者の性能がタスクによって大きく異なるのが興味深い。
  • リポジトリはGitHub – RUCAIBox/JiuZhang3.0: The code and data for the paper JiuZhang3.0

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です