Multilingual Trolley Problems for Language Models

  • Multilingual Trolley Problems for Language Models [138.1]
    この研究は、「道徳機械実験」という人間の道徳的嗜好に関する大規模横断的な研究から着想を得たものである。 大規模な言語モデル(LLM)は、英語、韓国語、ハンガリー語、中国語などの言語では人間の好みと一致しているが、ヒンディー語やソマリ語(アフリカ)のような言語では一致していないことを示す。 また, LLMが道徳的選択に与える説明を特徴付けるとともに, GPT-3によるGPT-4の決定と実用主義の裏側において, 公平性が最も有力であることを示す。
    論文  参考訳(メタデータ)   (Tue, 02 Jul 2024 14:02:53 GMT)
  • トロッコ問題のような道徳的なジレンマを含む問題を多数の言語に翻訳し、LLMの回答と人間の回答を比較した論文。「We discover that LLMs are more aligned with human preferences in languages such as English, Korean, Hungarian, and Chinese, but less aligned in languages such as Hindi and Somali (in Africa).」とのことで言語間の差異は気になるところ。また、「Moreover, we characterize the explanations LLMs give for their moral choices and find that fairness is the most dominant supporting reason behind GPT-4’s decisions and utilitarianism by GPT-3.」は面白い結果。LLMの規模によるものか、アライメントの方針が変わったのか、興味がある。
  • リポジトリはGitHub – causalNLP/moralmachine

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です