LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks

  • LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.1]
    人間の判断の代わりにLCMによる判断でNLPモデルを評価する傾向が高まっている。 人間のデータとの比較がないと、これらの評価の有効性が懸念される。 JUDGE-BENCHは、人間のアノテーションを持つ20個のNLPデータセットの集合である。
    論文  参考訳(メタデータ)   (Wed, 26 Jun 2024 14:56:13 GMT)
  • よく用いられるテクニックであるLLMを用いた評価に関するベンチマーク。「GPT-4o ranks first across several evaluation scenarios, but the Llama-3-70B and Mixtral-8x22B open models are relatively close, and outperform GPT-4o on some assessment types such as categorical sentence acceptability (CoLa) and graded summary quality (Summeval).」との結果。有効性はタスクによってかなり違う印象がある。
  • リポジトリはGitHub – dmg-illc/JUDGE-BENCH

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です