- Internal Consistency and Self-Feedback in Large Language Models: A Survey [17.5]
大規模言語モデル(LLM)は、正確に応答することが期待されているが、しばしば不十分な推論や幻覚的内容を生成する。 理論的枠組みは「内部整合性(internal Consistency)」と呼ばれ、推論の欠如や幻覚の存在といった現象について統一的な説明を提供する。 本稿では,自己フィードバック(Self-Feedback)と呼ばれる内部一貫性をマイニングする,合理的かつ効果的な理論的枠組みを提案する。
論文 参考訳(メタデータ) (Fri, 19 Jul 2024 17:59:03 GMT) - Self-なんとかに関連するもののサーベイ。「Self-Evaluation」 と「 Self-Update」からなる「Self-Feedbackフレームワーク 」で考えると整理しやすいのは確か。
- リポジトリはGitHub – IAAR-Shanghai/ICSFSurvey: A comprehensive survey on Internal Consistency and Self-Feedback in Large Language Models, including theoretical frameworks, task classifications, evaluation methods, future research directions and more!