Symbolic Working Memory Enhances Language Models for Complex Rule Application
Symbolic Working Memory Enhances Language Models for Complex Rule Application [87.3] 大規模言語モデル(LLM)は、顕著な推論性能を示しているが、多段階の推論に苦慮している。 本稿では,外部ワーキングメモリを用いたLLMの拡張と,ルール適用のためのニューロシンボリックフレームワークを提案する。 当社のフレームワークは,LLMベースのルール実装とシンボリックルールグラウンディングを反復的に実施する。 論文参考訳(メタデータ) (Sat, 24 Aug 2024 19:11:54 GMT)
LLMが苦手とするルールを適用していく多段推論に対応するため作業領域を用いる手法の提案。「We implement this working memory to store rules and facts in both natural language and their symbolic forms (i.e., in Prolog), thus supporting precise symbolic reference.」とPrologのような形式を併用するのが特徴的。