HalluEditBench、Should We Really Edit Language Models? On the Evaluation of Edited Language Models
Should We Really Edit Language Models? On the Evaluation of Edited Language Models [15.6] 既存の編集手法は、一般的なベンチマークで必然的にパフォーマンスが低下する。 インストラクションチューニングされたモデルは、編集がより堅牢で、編集後の一般的な知識に対するパフォーマンス低下が少ない。 その結果,現在の編集手法は,言語モデル内の小規模な知識更新にのみ適していることがわかった。 論文参考訳(メタデータ) (Thu, 24 Oct 2024 14:36:48 GMT)
知識編集に関する分析、「The experimental results indicate that existing editing methods can preserve the general capabilities of the model within a limited number of edits, not exceeding a few dozen.」、「Our experiments demonstrate that after only a few dozen edits, the safety of the model is compromised, including those models that have been aligned.」という指摘。また、「Language model with large scale is more resistant to editing compared to small model.」というのも、Knowledge Editingの研究成果が実問題に適用困難である可能性を示唆していると思う。
Can Knowledge Editing Really Correct Hallucinations? [16.3] 大規模言語モデル(LLM)は、タスクにまたがる優れた能力にもかかわらず、生成されたコンテンツの非現実的な情報を参照しながら幻覚に悩まされる。 知識編集は,LLMで符号化された誤った事実知識を,スクラッチからリトレーニングを避けるという利点によって補正する,新しい一般的なパラダイムとして開発された。 実世界の幻覚を正すための知識編集手法を全体ベンチマークするために,HaluEditBenchを提案する。 論文参考訳(メタデータ) (Mon, 21 Oct 2024 17:55:54 GMT)
Knowledge Editingに関するベンチマークの提案、「The effectiveness of knowledge editing methods in correcting real-world hallucinations could be far from what their performance on existing datasets suggests, reflecting the potential unreliability of current assessment of different knowledge editing techniques.」と気になる指摘がある。