The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features

  • The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features [40.2]
    本稿では,TabPFNと単純な特徴工学を組み合わせ,予測性能を高めるための簡単なアプローチであるTabPFN-TSを提案する。 その単純さとわずか1100万のパラメータにもかかわらず、TabPFN-TSは類似サイズのモデルであるChronos-Miniよりも優れており、65倍のパラメータを持つChronos-Largeよりもわずかに優れている。
    論文  参考訳(メタデータ)   (Mon, 06 Jan 2025 11:38:19 GMT)
  • なかなか難しい感のあるTabular Foundation Modelの提案。「By using a simple set of timestampderived features, our approach matches or slightly outperforms Chronos-T5 (Large), which, to our knowledge, is one of the strongest time series foundation models.」とのこと。時系列データの基礎的な動きを捉えられているのかもしれないが、使う場合はそのドメインでの検証はした方が良いのだろうなと思う。
  • リポジトリはGitHub – PriorLabs/tabpfn-client: ⚡ Easy API access to the tabular foundation model TabPFN ⚡

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です