Measuring Diversity in Synthetic Datasets [59.5] 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクのための合成データセットを生成するために広く採用されている。 これらの合成データセットの多様性を正確に測定する – 堅牢なモデルのパフォーマンスに不可欠な側面は、大きな課題である。 分類の観点から,合成データセットの多様性を測定する新しい手法であるDCScoreを紹介する。 論文参考訳(メタデータ) (Wed, 12 Feb 2025 15:46:34 GMT)
合成データの多様性を評価する手法の提案、「the difference between samples can be measured through a n-classification task, where evaluating n sample datasets involves n n-classification tasks, with each sample corresponding to a distinct category.」という分類モデルを用いるアプローチ。合成データ活用が広がり、DeepSeek V3/R1で加速しそうな中、結論にある「we hope our work encourages future research to pay more attention to the diversity of synthetic datasets」はその通りだと思う。