マルチタスク・マルチリンガルのための大規模・効率的なMoE(Mixture of Experts)学習

  • Scalable and Efficient MoE Training for Multitask Multilingual Models [56.0]
    我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。 また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。 50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
    論文  参考訳(メタデータ)   (Wed, 22 Sep 2021 00:57:46 GMT)
    • 極めて大規模なモデルを構築可能な手法に関する論文。既存手法に比べて同じハードウェアで8倍のモデルサイズの学習を実現。
    • 構築された機械翻訳モデルの学習効率と性能が凄い。denseなモデルに比べて10倍収束が速い。単純な個別のバイリンガルモデルにくらべてマルチリンガル設定でBLEU +4pt、M2M-100に比べてBLEU + 3pt。などすごい数値が並んでいる。
    • リポジトリはhttps://github.com/microsoft/DeepSpeed、チュートリアルへのリンクもあって非常に参考になる。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です