TabPFN-2.5: Advancing the State of the Art in Tabular Foundation Models / Does TabPFN Understand Causal Structures? / TransactionGPT
TabPFN-2.5: Advancing the State of the Art in Tabular Foundation Models [76.5] TabPFN-2.5は5万のデータポイントと2,000の機能を持つデータセット用に構築されている。 チューニングされたツリーベースモデルとAutoGluon 1.4の精度を大幅に上回った。 生産用として,TabPFN-2.5を小型または木製アンサンブルに変換する新しい蒸留エンジンを導入する。 論文参考訳(メタデータ) (Thu, 13 Nov 2025 01:01:46 GMT)
テーブルデータに対する基盤モデルの提案、TabArena – a Hugging Face Space by TabArenaで「TabPFN-2.5 is now the leading method for the industry standard benchmark TabArena (which contains datasets with up to 100,000 training data points), substantially outperforming tuned tree-based models and matching the accuracy of AutoGluon 1.4, a complex four-hour tuned ensemble that even includes the previous TabPFNv2. Remarkably, default TabPFN-2.5 has a 100% win rate against default XGBoost on small to medium-sized classification datasets (≤10,000 data points, 500 features) and a 87% win rate on larger datasets up to 100K samples and 2K features (85% for regression).」と高性能を主張
Does TabPFN Understand Causal Structures? [40.2] 本研究では,TabPFNが内部表現に因果情報をエンコードするかどうかを検討する。 学習可能なデコーダと因果トークンを用いたアダプタフレームワークを開発した。 評価の結果,TabPFNの埋め込みには因果情報が含まれており,従来の因果発見アルゴリズムよりも優れていることがわかった。 論文参考訳(メタデータ) (Mon, 10 Nov 2025 15:53:15 GMT)
「We show that TabPFN’s embeddings contain causal information and that our adaptor framework outperforms traditional causal discovery algorithms when causal information is extracted from mid- range layers. This further promotes leveraging pre-trained tabular models for extracting causal structures, improving the interpretability of these models, and aiding in scientific discovery.」と興味深い性質を報告。
Visa Researchによる基盤モデル。「TransactionGPT (TGPT), a foundation model that captures complex consumer shopping dynamics from Multi-Modal-Temporal-Tabular (MMTT) data.」、「Extensive experiments on large-scale, real-world payment data validate TGPT’s ability to learn meaningful transaction patterns, leading to significant performance improve- ments on critical downstream tasks. Furthermore, we quantify the benefits of several designs that enhance the TGPT’s efficiency and scalability.」とのこと。