コンテンツへスキップ
- XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models [87.7]
我々は,言語間のトークン共有を非強調にすることで,非常に大きな多言語語彙に拡張する新たなアプローチを提案する。 我々は100万のトークン語彙を持つ多言語言語モデルであるXLM-Vを訓練する。 XLM-Vは、自然言語推論(XNLI)から質問応答(MLQA)、名前付きエンティティ認識(WikiAnn)まで幅広いタスクでXLM-Rより優れています。
論文 参考訳(メタデータ) (Wed, 25 Jan 2023 09:15:17 GMT)
- 多言語モデルで問題(かつ議論)となる語彙に関する論文。100万語彙を持つモデルを学習し優れた性能を出しているのはすごい。
- 「Most notably, we provide evidence showing that expanding the vocabulary beyond 1M tokens can degrade performance on downstream tasks」というのも興味深い。
- MusicLM: Generating Music From Text [24.5]
テキスト記述から高忠実度音楽を生成するモデルであるMusicLMを紹介する。 MusicLMは、階層的なシーケンス・ツー・シーケンス・モデリングタスクとして条件付き音楽生成のプロセスをキャストする。 実験の結果,MusicLMは従来のシステムよりも音質やテキスト記述の順応性が優れていることがわかった。
論文 参考訳(メタデータ) (Thu, 26 Jan 2023 18:58:53 GMT)
- テキストからの音楽生成、hierarchical sequence-to-sequence modelingとテンプレートレス。MusicCapsという名前で音楽とテキストのペアデータセット、55kを公開しているのも素晴らしい
- プロジェクトサイトはMusicLM (google-research.github.io)、サンプルが聞けてそれっぽいのと歌声が入っているのも面白い。
- MusicCapsデータセットはMusicCaps | Kaggleにあり、ライセンスはCC BY-SA 4.0
- TabLLM: Few-shot Classification of Tabular Data with Large Language Models [66.0]
大規模言語モデルのゼロショットおよび少数ショット分類への応用について検討する。 テンプレートやテーブル・ツー・テキストモデル,大規模言語モデルなど,いくつかのシリアライズ手法を評価する。 このアプローチは、勾配木のような強力な伝統的なベースラインとも競合する。
論文 参考訳(メタデータ) (Wed, 19 Oct 2022 17:08:13 GMT)- 大規模言語モデルを用いたテーブルデータ処理。(現実的に使えるかは置いておいて)few-shot設定では優れた性能。言語モデルで取り扱えるようにする過程で情報が与えられているようにも思うが、これはこれで新たなモデル構築のように見えなくもない。
- A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models [53.9]
大規模言語モデル(PLM)はメモリフットプリントと計算の点で非効率である。 PLMはデータセットバイアスに頼り、アウト・オブ・ディストリビューション(OOD)データへの一般化に苦慮する傾向にある。 最近の研究では、高密度PLMは、性能を損なうことなくスパースサブネットに置き換えることができることが示されている。
論文 参考訳(メタデータ) (Tue, 11 Oct 2022 07:26:34 GMT)
- Ask Me Anything: A simple strategy for prompting language models [24.3]
大規模言語モデル(LLM)は、単にタスクの実行方法を示す自然言語プロンプトを与えられただけで、追加のトレーニングは行われない。本研究では,質問応答(QA)のプロンプトが,モデル出力を制限するプロンプトよりも優れていることを示す。 収集したプロンプトを適用して、入力の真のラベルに対していくつかのノイズの多い投票を行う。 プロンプトは、非常に異なる精度と複雑な依存関係を持つことができる。
論文 参考訳(メタデータ) (Thu, 6 Oct 2022 06:39:56 GMT)