Qwen3, Phi-4 reasoning, MiMo 7B, OLMo2 1B, Mellum 4B

先週はオープンなモデルのニュースが多かった。その中でもQwen3は大きなニュースである(Qwen3: Think Deeper, Act Faster | Qwen)。MoEなQwen3-235B-A22B, Qwen3-30B-A3Bの他、denseなQwen3-32B, Qwen3-14B, Qwen3-8B, Qwen3-4B, Qwen3-1.7B, Qwen3-0.6Bが公開されている(Qwen3 – a Qwen Collection)。ライセンスはApache-2。また、MicrosoftのPhi-4のreasoningモデル公開(Showcasing Phi-4-Reasoning: A Game-Changer for AI Developers | Microsoft Community Hubhuggingface)も注目。

SLMの発表も多く、XiaomiによりMiMo(GitHub – XiaomiMiMo/MiMo: MiMo: Unlocking the Reasoning Potential of Language Model – From Pretraining to Posttraining)、Ai2によるOLMo release notes | Ai2が興味深い。JetBrainによるMellum(Mellum Goes Open Source: A Purpose-Built LLM for Developers, Now on Hugging Face | The JetBrains Blog)は「Mellum doesn’t try to know everything. It’s designed to do one thing really well: code completion. We call it a focal model – built with purposeful depth and not concerned with chasing breadth.」とある通り特化型。現状、Mellumは十分な性能とは言い難いものの、SLMを特化して強化する、コスパを上げる方向は有望。DeepseekProver-V2の671Bは凄いが、7Bのうまい活用のような組み合わせも重要になると思う。

  • Phi-4-reasoning Technical Report [42.5]
    Phi-4-reasoningは14ビリオンのパラメータ推論モデルであり、複雑な推論タスクにおいて高い性能を実現する。 我々はPhi-4-reasoning-plusを開発した。 どちらのモデルもDeepSeek-R1-Distill-Llama-70Bモデルのような大きなオープンウェイトモデルよりも優れており、完全なDeepSeek-R1モデルのパフォーマンスレベルに近づいている。
    論文  参考訳(メタデータ)   (Wed, 30 Apr 2025 05:05:09 GMT)
  • Phi-4シリーズのLRM
  • Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math [135.1]
    CoT(Chain-of-Thought)は大規模言語モデル(LLM)の形式推論能力を著しく向上させる しかし、Small Language Models (SLM) における推論の改善は、モデル能力が限られているため、依然として困難である。 本研究では,(1)多種多様な蒸留長CoTデータによる大規模中等教育,(2)高品質長CoTデータによる微調整,(3)厳格な選好データセットを活用したロールアウトDPO,(4)検証リワードを用いた強化学習(RL)の4段階からなるSLMの体系的トレーニングレシピを提案する。
    論文  参考訳(メタデータ)   (Wed, 30 Apr 2025 00:04:35 GMT)
  • SLMを利用したreasoningモデルの構築。「The resulting Phi-4-Mini-Reasoning model exceeds, on math reasoning tasks, much larger reasoning models, e g , outperforming DeepSeek-R1-Distill-Qwen-7B by 3.2 points and DeepSeek-R1-DistillLlama-8B by 7.7 points on Math-500.」と効果を確認とのこと。
  • 小型のモデルであってもreasoningが有効という興味深い結果。
  • DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition [24.5]
    我々はDeepSeek-Prover-V2を紹介します。 このモデルは、ニューラル定理の証明における最先端のパフォーマンスを達成し、ミニF2Fテストで88.9%のパス比に達し、PutnamBenchの658問題のうち49を解決した。 標準ベンチマークに加えて、325の形式化された問題の集合であるProverBenchを導入し、最近のAIMEコンペティションから選択された15の問題を含む評価を強化した。
    論文  参考訳(メタデータ)   (Wed, 30 Apr 2025 16:57:48 GMT)
  • 「We first prompt DeepSeek-V3 to generate a natural-language proof sketch while simultaneously formalizing it into a Lean statement with sorry placeholders for omitted proof details. A 7B prover model then recursively solves the decomposed subgoals. By combining these subgoal proofs, we construct a complete formal proof for the original complex problem.This composed proof is appended to DeepSeek-V3’s original chain-of-thought, creating high-quality cold-start training data for formal mathematical reasoning. 」
  • リポジトリはGitHub – deepseek-ai/DeepSeek-Prover-V2

Reinforcement Learning for Reasoning in Large Language Models with One Training Example

  • Reinforcement Learning for Reasoning in Large Language Models with One Training Example [129.1]
    1つのトレーニング例(1ショットRLVR)を用いた強化学習は,大規模言語モデル(LLM)の算数推論能力の向上に有効であることを示す。 1ショットRLVRにおける興味深い現象として、クロスドメインの一般化、自己回帰の頻度の増大、トレーニング精度が飽和した後もテスト性能の向上が維持されていることを挙げる。
    論文  参考訳(メタデータ)   (Tue, 29 Apr 2025 09:24:30 GMT)
  • 「We find that selecting one specific example as the training dataset can achieve similar downstream performance to that of the 1.2k DeepScaleR subset (DSR-sub) containing that example. Specifically, this improves the Qwen2.5-Math-1.5B model from 36.0% to 73.6% on MATH500, and from 17.6% to 35.7% on average across 6 mathematical reasoning benchmarks (Fig. 1, 2).」という興味深い報告。「These findings suggest that the reasoning capability of the model is already buried in the base model, and encouraging exploration on a very small amount of data is capable of generating useful RL training signals for igniting LLM’s reasoning capability.」はそうなのだろうと思う。LLMの中には何が入っていてチューニングって何をしているんだろう。。。
  • リポジトリはGitHub – ypwang61/One-Shot-RLVR: official repository for “Reinforcement Learning for Reasoning in Large Language Models with One Training Example”

ReasonIR: Training Retrievers for Reasoning Tasks

The Leaderboard Illusion

  • The Leaderboard Illusion [30.2]
    アリーナは最も有能なAIシステムランキングのリーダーボードとして登場した。 我々は,ゆがんだ競技場に生じた体系的な問題を同定する。
    論文  参考訳(メタデータ)   (Tue, 29 Apr 2025 15:48:49 GMT)
  • Chatbot Arena に対する問題点の指摘と改善提案
  • 「We find that undisclosed private testing practices benefit a handful of providers who are able to test multiple variants before public release and retract scores if desired.」、「At an extreme, we identify 27 private LLM variants tested by Meta in the lead-up to the Llama-4 release.」は確かに問題
  • リーダーボードの設計、運用はとても難しいが、できるところは改善を期待したい