Nemotron-Research-Tool-N1: Tool-Using Language Models with Reinforced Reasoning

  • Nemotron-Research-Tool-N1: Tool-Using Language Models with Reinforced Reasoning [93.3]
    DeepSeek-R1同様の学習パラダイムを用いた一連のツール利用言語モデルを開発した。 Nemotron-Research-Tool-N1は、ツール呼び出しの構造的妥当性と機能的正確性のみを評価するバイナリ報酬で最適化されている。 実験により、Qwen-2.5-7B/14B-Instruct上に構築されたNemotron-Research-Tool-N1-7BとNemotron-Research-Tool-N1-14Bが最先端の結果を得ることが示された。
    論文  参考訳(メタデータ)   (Fri, 25 Apr 2025 02:55:21 GMT)
  • 「We introduces Nemotron-Research-Tool-N1, a series of tool-using language models trained with a rule-based reinforcement learning.」とルールベースの強化学習の有効性を確認した報告。
  • リポジトリはGitHub – NVlabs/Tool-N1

SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning

  • SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning [99.6]
    セルフプレイ批判(Self-Play Critic、SPC)は、対戦型セルフプレイゲームを通じて推論ステップを評価する能力を進化させる新しいアプローチである。 SPCは、ベースモデルの2つのコピーを微調整して、2つの役割、すなわち「スニーキージェネレータ」と「批判的」を演じる。
    論文  参考訳(メタデータ)   (Sun, 27 Apr 2025 08:45:06 GMT)
  • 「In this paper, we propose a self-play critic with the ability of detecting step-level LLMs reasoning errors. Specifically, we design a sneaky generator to produce incorrect steps and a critic to assess the correctness of each step. Through the adversarial game between these two models, we can continuously generate positive and negative samples for reinforcement learning.」というアプローチの提案。GANっぽいなと思う。
  • プロジェクトサイトはSPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning

A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment

  • A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment [291.0]
    本稿では, LLM のトレーニング, 展開, 商業化のプロセス全体を通して, 安全問題を体系的に検討する “フルスタック” の安全性の概念を紹介する。 我々の研究は800以上の論文を網羅的にレビューし、包括的カバレッジとセキュリティ問題の体系的な組織化を確保しています。 本研究は,データ生成の安全性,アライメント技術,モデル編集,LLMベースのエージェントシステムなど,有望な研究方向を特定する。
    論文  参考訳(メタデータ)   (Tue, 22 Apr 2025 05:02:49 GMT)
  • 安全性に関する包括的な調査
  • リポジトリにも期待大 bingreeky/full-stack-llm-safety · GitHub

DeepCritic: Deliberate Critique with Large Language Models

  • DeepCritic: Deliberate Critique with Large Language Models [77.6]
    我々は,Large Language Models(LLMs)の数学批判能力の研究と向上に焦点をあてる。 Qwen2.5-7B-Instructをベースとした批判モデルを開発した。
    論文  参考訳(メタデータ)   (Thu, 01 May 2025 17:03:17 GMT)
  • Deepな批評を行うモデルの提案。「In Stage 1, we first utilize Qwen2.5-72B-Instruct to generate an initial step-wise critique for each step in the solution, followed by an in-depth critique of the initial critique.」、「In Stage 2, we perform RL to the SFT model on either existing human-annotated data or auto-labeled data via Monte Carlo sampling-based correctness estimation, to further stimulate the critique ability of the critic.」の2ステージ構成で構築。Criticモデルは他のモデル出力の修正にも有効なことが知られているが「our 7B critique model is also capable of supervising and correcting the outputs of a 72B generator, demonstrating a potential of weak-to-strong supervision」は興味深い。
  • リポジトリはGitHub – RUCBM/DeepCritic: Official repository for paper “DeepCritic: Deliberate Critique with Large Language Models”