- CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting [35.8]
我々はCoSTという新しい時系列表現学習フレームワークを提案する。 コントラスト学習法を用いて季節差表現を学習する。 実世界のデータセットの実験では、CoSTが最先端のメソッドを一貫して上回っていることが示されている。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 3 Feb 2022 13:17:38 GMT)- 新たな時系列表現学習方法の提案。
- TS2Vec GitHub – yuezhihan/ts2vec: A universal time series representation learning framework を上回る性能とのこと。