PERFECT: Prompt-free and Efficient paRadigm for FEw-shot Cloze-based fine-Tuning

  • PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models [67.4]
    PERFECTは、手工芸に頼らずに数発のPLMを微調整するためのシンプルで効率的な方法である。 そこで本研究では,手作業によるタスクプロンプトを,サンプル効率の良い微調整が可能なタスク固有アダプタに置き換えることができることを示す。 幅広い数発のNLPタスクの実験では、PERFECTはシンプルで効率的でありながら、既存の最先端の数発の学習方法よりも優れていることが示されている。
    論文  参考訳(メタデータ)  参考訳(全文)  (Sun, 3 Apr 2022 22:31:25 GMT)
    • 手作業のプロンプト作成を排除するため、タスクを表すAdaptor層をチューニング可能なアーキテクチャ。手作業無しで優れた性能を達成とのこと。
    • リポジトリはGitHub – rabeehk/perfect

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です