- “Real Attackers Don’t Compute Gradients”: Bridging the Gap Between Adversarial ML Research and Practice [10.8]
研究者と実践者の間に明らかなギャップがあることから,本論文は2つの領域を橋渡しすることを目的としている。 まず実世界のケーススタディを3つのケーススタディで提示し、そのケーススタディから、未知の、あるいは無視された実用的な洞察を導き出すことができる。 次に、トップセキュリティカンファレンスで最近公開されたすべての敵対的ML論文を分析し、ポジティブなトレンドと盲点を強調します。
論文 参考訳(メタデータ) (Thu, 29 Dec 2022 14:11:07 GMT) - 機械学習を利用したシステムへの攻撃に関する非常に広範なサーベイ。研究と実務のギャップがわかる内容。セキュリティ関連一般に言えることかもだが、悪意のある攻撃からの防御にはシステム全体の考慮が必要。
- このサーベイのリソースはReal Attackers Don’t Compute Gradients (real-gradients.github.io)で公開されている。また、Welcome to the Artificial Intelligence Incident Database が参考文献に挙げられており参考になった