- Machine Unlearning: Solutions and Challenges [23.1]
機械学習モデルは、機密性、不正、悪意のあるデータを不注意に記憶し、プライバシ侵害、セキュリティ侵害、パフォーマンス劣化のリスクを生じさせる可能性がある。 これらの問題に対処するために、機械学習は訓練されたモデルに対する特定の訓練データポイントの影響を選択的に除去する重要なテクニックとして登場した。
論文 参考訳(メタデータ) (Mon, 14 Aug 2023 10:45:51 GMT) - Machine Unlearningのサーベイ、EXACT UNLEARNING、APPROXIMATE UNLEARNINGに分けてレビューがなされている。SISA(Sharding, Isolation, Slicing, and Aggregation )が有名な気がしつつ、いろいろなアプローチがあって興味深い。