Context Tuning for Retrieval Augmented Generation 

  • Context Tuning for Retrieval Augmented Generation [1.2]
    本稿では、スマートコンテキスト検索システムを用いて関連する情報を取得するRAGのためのコンテキストチューニングを提案する。 実験の結果,文脈調整が意味探索を著しく促進することが示された。 また,Reciprocal Rank Fusion (RRF) とLambdaMARTを用いた軽量モデルでは,GPT-4に基づく検索よりも優れていることを示す。
    論文  参考訳(メタデータ)   (Sat, 9 Dec 2023 23:33:16 GMT)
  • LLMの実利用において重要なRAGの検証と、LambdaMART with Reciprocal Rank Fusionが有効だったという報告
  • データ構築部分に「This methodology provided a comprehensive and realistic dataset, essential for the evaluation of our context tuning approach in RAG-based planning systems.」とあるが、この設定がrealisticかは見解が分かれそうに思う…(結果は興味深いけど)

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です