GSSMs vs transformerとBlack Mamba

GSSM(Generalized State Space Models)とtransformerの比較とMoEなアプローチ。昨日のMambaのICL(In Context Learning)性能 – arXiv最新論文の紹介 (devneko.jp)の通り、特性はかなり違うのでMoEっぽく使うのはありなのかもしれない。

  • Repeat After Me: Transformers are Better than State Space Models at Copying [57.4]
    一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
    論文  参考訳(メタデータ)   (Thu, 1 Feb 2024 21:44:11 GMT)
  • シンプルな事例でのGSSMとtransformerの比較。当然なのかもだが「transformer models dramatically outperform state space models at copying and retrieving information from context.」
  • BlackMamba: Mixture of Experts for State-Space Models [10.2]
    状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。 MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。 我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
    論文  参考訳(メタデータ)   (Thu, 1 Feb 2024 07:15:58 GMT)
  • リポジトリはZyphra/BlackMamba: Code repository for Black Mamba (github.com)、モデルも公開されている Zyphra/BlackMamba-2.8B · Hugging Face

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です