The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights

  • The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.4]
    本稿では,大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメント手法を提案する。 実験結果から,質問アライメント手法は多様な推論シナリオにおける多言語のパフォーマンス向上に有効であることが示唆された。 その成功のメカニズムを理解するために、表現空間、チェーン・オブ・シンク、翻訳データスケールを分析する。
    論文  参考訳(メタデータ)   (Thu, 02 May 2024 14:49:50 GMT)
  • 多言語性能を上げるための2段階のアライメント手法( question alignment and response alignment)の提案。さらに「En-X translation training can implicitly bias LLM to generate non-English chain-of-thought and increase the question-response language consistency.」とのこと。分析や解釈も面白い。
  • リポジトリはGitHub – NJUNLP/QAlign

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です