CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation

  • CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation [132.0]
    言語モデル(LM)による著作権保護されたコンテンツの再生の度合いを評価することは、AIと法的なコミュニティにとって重要な関心事である。 LM世代におけるリテラルコピーと非リテラルコピーの両方を測定するために設計されたベンチマークであるCopyBenchを紹介する。 リテラル複写は比較的稀であるが、イベント複写と文字複写という2種類の非リテラル複写は、7Bパラメータのモデルでも発生する。
    論文  参考訳(メタデータ)   (Tue, 09 Jul 2024 17:58:18 GMT)
  • (シンプルな)Literal copyingだけでなくパラフェージングなどを通して行われるNon-literal copyingも対象にしたベンチマークの提案と検証。リテラルコピーが大規模モデルで問題になるのは直観的に明らかとして「In proprietary models, the transition from GPT-3.5 to GPT-4 interestingly reduces literal copying but increases non-literal copying.」や「we find that current inference-time mitigation methods, although effective at reducing literal copying, are insufficient for addressing nonliteral copying.」という記載は興味深い。
  • リポジトリはGitHub – chentong0/copy-bench: CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です