Think&Cite: Improving Attributed Text Generation with Self-Guided Tree Search and Progress Reward Modeling [64.0] 大型言語モデル(LLM)は幻覚を起こし、事実的に誤った情報を生み出す傾向にある。 我々はThink&Citeと呼ばれる新しいフレームワークを提案し、検索と統合された多段階推論問題として属性付きテキスト生成を定式化する。 論文参考訳(メタデータ) (Thu, 19 Dec 2024 13:55:48 GMT)
エビデンス付きのテキスト生成のためSelf-Guided Monte Carlo Tree Search (SG-MCTS)を提案。モンテカルロツリーを使って性能を上げようという取り組みは多いが「To the best of our knowledge, we are the first to apply tree search algorithms to the task of attributed text generation.」はそうかもしれない。
RAGなどを上回る性能を達成とのこと。有効な手法に思える。
RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.1] 既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。 検索情報を統合した新しいRAG手法である RAG-Star を提案する。 Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。 論文参考訳(メタデータ) (Tue, 17 Dec 2024 13:05:36 GMT)
「RAG-Star employed Monte Carlo Tree Search to search intermediate sub-queries and corresponding answers. Moreover, RAG-Star introduced retrieval-augmented verification to evaluate the plausibility and consistency of the planned subqueries and answers based on a query-aware and an answer-aware reward.」とこちらはRAGにMonte Carlo Tree Searchを組み合わせるタイプの報告