Out-of-Distribution に関するサーベイ

  • Towards Out-Of-Distribution Generalization: A Survey [30.7]
    古典的な機械学習手法は、トレーニングデータとテストデータが独立して同じ分散であるというi.i.d.の仮定に基づいて構築されている。 実際のシナリオでは、i.i.d.の仮定はほとんど満たされず、分散シフトの下で古典的な機械学習アルゴリズムのパフォーマンスが急落する。 本論文は,OOD一般化問題を体系的かつ包括的に議論する最初の試みである。
    論文  参考訳(メタデータ)   (Tue, 31 Aug 2021 05:28:42 GMT)
    • 機械学習の社会実装で避けては通れない Out-Of-Distribution問題のサーベイ。問題の定義、対応手法(およびその関係性)、データセット、評価指標にわたる広範な内容だが16ページとコンパクト。研究概要を知るために良い内容だと思う。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です