- Towards Out-Of-Distribution Generalization: A Survey [30.7]
古典的な機械学習手法は、トレーニングデータとテストデータが独立して同じ分散であるというi.i.d.の仮定に基づいて構築されている。 実際のシナリオでは、i.i.d.の仮定はほとんど満たされず、分散シフトの下で古典的な機械学習アルゴリズムのパフォーマンスが急落する。 本論文は,OOD一般化問題を体系的かつ包括的に議論する最初の試みである。
論文 参考訳(メタデータ) (Tue, 31 Aug 2021 05:28:42 GMT)- 機械学習の社会実装で避けては通れない Out-Of-Distribution問題のサーベイ。問題の定義、対応手法(およびその関係性)、データセット、評価指標にわたる広範な内容だが16ページとコンパクト。研究概要を知るために良い内容だと思う。
- http://out-of-distribution-generalization.com/ から調査対象資料が確認可能。この資料集も非常にありがたい。