- A Survey on Memory-Efficient Large-Scale Model Training in AI for Science [20.3]
この調査は、生物学、医学、化学、気象学などの科学分野にまたがる応用をレビューする。 本稿では,変圧器アーキテクチャに基づく大規模言語モデル(LLM)のメモリ効率トレーニング手法について概説する。 予測精度を保ちながら,メモリ最適化手法がストレージ需要を削減できることを実証する。
論文 参考訳(メタデータ) (Tue, 21 Jan 2025 03:06:30 GMT) - 科学への応用にフォーカスしたMemory Efficientなモデルのサーベイ
- 「Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy.」という内容も。