DeepThink: Aligning Language Models with Domain-Specific User Intents 

  • DeepThink: Aligning Language Models with Domain-Specific User Intents [25.5]
    本研究では、高品質な命令を生成するためのDeepThinkと呼ばれる新しいフレームワークを提案する。 DeepThinkはまず、いくつかのシード質問を生成して、実際のユーザ質問を模倣し、会話をシミュレートして、隠されたユーザニーズを明らかにし、会話のコンテキストによって回答を洗練する。 実験により、DeepThinkは広告ドメイン内の実際のユーザテストセット上でのGPT-4-turbo+RAGベースのアシスタントと比較して平均パフォーマンスが7.92%向上していることが示された。
    論文  参考訳(メタデータ)   (Sat, 08 Feb 2025 09:04:16 GMT)
  • 「: data synthesis based on conversations, data refinement based on conversations, and supervised fine-tuning (SFT) enhanced with retrieval, DeepThink addresses the critical challenge of adapting LLM to understand and meet hidden user needs in vertical domains.」というデータ合成フレームワーク+αの提案と有効性検証。
  • ユーザの隠れたニーズに対応するためLLMの内部知識が有効という解釈だろうか。ありそうな気はするのと、大規模に行うAgentSocietyのようなことが現実的なら様々な分野で活用できそう。(悪用も怖い)

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です