Teaching Models to Understand (but not Generate) High-risk Data
Teaching Models to Understand (but not Generate) High-risk Data [38.3] SLUNG(Selective Loss to Understand but not Generate)を紹介する。 SLUNGは、モデルが高リスクデータを生成せずに理解することを学ぶための事前学習パラダイムである。 SLUNGは、生成を増大させることなく、モデルによる高リスクデータの理解を一貫して改善することを示す。 論文参考訳(メタデータ) (Mon, 05 May 2025 22:24:06 GMT)
「This work introduces SLUNG, a pre-training paradigm that enables language models to learn from high-risk data without being trained to generate it. By selectively adjusting the training objective at the token level based on risk, SLUNG decouples a model’s ability to understand from its ability to generate, allowing models to condition on high-risk inputs while learning from adjacent low-risk tokens.」という手法の提案。口外することはできないが学ぶ必要があるもの、というのは現実的に多いわけでこのような手法は非常に面白い。