Qwen3-Max, K2-Instruct-0905, LongCat-Flash, Dream-Coder 7B, Kwai Keye-VL 1.5

先週もLLM/LRM界隈のニュースは多かった。Qwen3系最大構成のQwen3 Maxの公開(XユーザーのQwenさん: 「Big news: Introducing Qwen3-Max-Preview (Instruct) — our biggest model yet, with over 1 trillion parameters! 🚀 Now available via Qwen Chat & Alibaba Cloud API. Benchmarks show it beats our previous best, Qwen3-235B-A22B-2507. Internal tests + early user feedback confirm: https://t.co/7vQTfHup1Z」 / XModels and pricing – Alibaba Cloud Model Studio – Alibaba Cloud Documentation Center)、Kimi K2のアップデート(XユーザーのKimi.aiさん: 「Kimi K2-0905 update 🚀 – Enhanced coding capabilities, esp. front-end & tool-calling – Context length extended to 256k tokens – Improved integration with various agent scaffolds (e.g., Claude Code, Roo Code, etc) 🔗 Weights & code: https://t.co/83sQekosr9 💬 Chat with new Kimi https://t.co/mkOuBMwzpw」 / Xmoonshotai/Kimi-K2-Instruct-0905 · Hugging Face)やLongCat-Flashの他、Dream-Coder 7B、Kwai Keye-VL 1.5など小規模でもユニークなモデルも発表されている。

Introduction – Agent Client ProtocolGitHub – zed-industries/agent-client-protocol: A protocol for connecting any editor to any agent)といったプロトコルの提案など周辺領域にも目が離せない。

  • LongCat-Flash Technical Report [165.7]
    LongCat-Flashは、560ビリオンパラメータのMixture-of-Experts (MoE)言語モデルである。 計算効率と高度なエージェント能力の両方のために設計されている。 30日以内に20兆トークン以上のモデルトレーニングを完了し、100トークン/秒 (TPS) 以上の推論を0.70パーセントのアウトプットトークンで達成しました。
    論文  参考訳(メタデータ)   (Mon, 01 Sep 2025 10:05:45 GMT)
  • 560B MoE構成、「As a non-thinking model, LongCat-Flash achieves performance comparable to state-of-the-art non-thinking models, including DeepSeek-V3.1 [DeepSeek-AI et al , 2025] and Kimi-K2 [Team et al , 2025], while using fewer parameters and offering faster inference speed. Specifically, LongCat-Flash scores 86.5 on ArenaHard-V2, 39.5 on TerminalBench, and 67.7 on τ 2-Bench, demonstrating robust capabilities in general domains, coding, and agentic tool use.」
  • リポジトリはGitHub – meituan-longcat/LongCat-Flash-Chat
  • Dream-Coder 7B: An Open Diffusion Language Model for Code [99.1]
    そこで,Dream-Coder 7Bを提案する。Dream-Coder 7Bは,任意の順序生成能力を示すコード生成のための,オープンソースの離散拡散言語モデルである。 厳密に左から右にデコードする従来の自己回帰(AR)モデルとは異なり、ドリームコーダ7Bはコーディングタスクに基づいてデコード戦略を適応的に決定する。
    論文  参考訳(メタデータ)   (Mon, 01 Sep 2025 05:30:56 GMT)
  • コーディングタスク強化の拡散モデル
  • リポジトリはGitHub – DreamLM/Dream-Coder
  • Kwai Keye-VL 1.5 Technical Report [91.3]
    本稿では、ビデオ理解における根本的な課題を3つの重要なイノベーションを通じて解決するKeye-VL-1.5を紹介する。 まず,フレーム間の類似性に基づいて動的に計算資源を割り当てるSlow-Fastビデオ符号化方式を提案する。 次に,モデルのコンテキスト長を8Kから128Kまで体系的に拡張する4段階事前学習手法を提案する。 第3に、推論の強化と人間の嗜好の整合性に焦点を当てた総合的な後学習パイプラインを開発する。
    論文  参考訳(メタデータ)   (Mon, 01 Sep 2025 15:46:58 GMT)
  • 「Keye-VL-1.5-8B establishes new state-of-the-art performance among models of similar scale, demonstrating superior results on video-centric benchmarks while maintaining competitive performance on general multimodal and reasoning tasks.」とビデオを扱えるモデル
  • リポジトリはGitHub – Kwai-Keye/Keye

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です