AI Memory関連の論文、ベンチマーク

先週はAI Memory関連の論文が多く出ていた。ベンチマークも増えていて重要かつ熱い分野。

  • EvolMem: A Cognitive-Driven Benchmark for Multi-Session Dialogue Memory [63.8]
    EvolMemは、大規模言語モデル(LLM)とエージェントシステムのマルチセッションメモリ機能を評価するための新しいベンチマークである。 このベンチマークを構築するために,話題から始まる生成と物語から着想を得た変換からなるハイブリッドデータ合成フレームワークを提案する。 広範な評価により、どのLLMもすべてのメモリ次元において一貫して他を上回ることはないことが明らかになりました。 
    論文  参考訳(メタデータ)   (Wed, 07 Jan 2026 03:14:42 GMT)
  • メモリ機能のためのベンチマーク
  • リポジトリはGitHub – shenye7436/EvolMem
  • Agentic Memory: Learning Unified Long-Term and Short-Term Memory Management for Large Language Model Agents [57.4]
    大規模言語モデル (LLM) エージェントは、有限コンテキストウィンドウによる長距離推論において基本的な制限に直面している。 既存のメソッドは通常、長期記憶(LTM)と短期記憶(STM)を独立したコンポーネントとして扱う。 本稿では,エージェントのポリシーに LTM と STM 管理を直接統合する統合フレームワークである Agentic Memory (AgeMem) を提案する。
    論文  参考訳(メタデータ)   (Mon, 05 Jan 2026 08:24:16 GMT)
  • 長期・短期記憶を統一的に扱うアプローチ、「we propose Agentic Memory (Age- Mem), a unified memory management framework that enables LLM-based agents to jointly control long-term and short-term memory through learn- able, tool-based actions. By integrating memory operations directly into the agent’s policy and training them with a progressive reinforcement learning strategy, AgeMem replaces heuristic memory pipelines with an end-to-end optimized solution. Extensive experiments across diverse long-horizon benchmarks show that AgeMem improves both task performance and memory quality while maintaining efficient context usage.」
  • EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning [42.3]
    大きな言語モデル(LLM)は、長期の対話エージェントとしてますますデプロイされているが、その限られたコンテキストウィンドウは、拡張された相互作用よりもコヒーレントな振舞いを維持するのが困難である。 本稿では,EverMemOSについて紹介する。EverMemOSは,計算メモリにエミュレートされたライフサイクルを実装した自己組織型メモリオペレーティングシステムである。 EverMemOSは、メモリ拡張推論タスクで最先端のパフォーマンスを達成する。
    論文  参考訳(メタデータ)   (Mon, 05 Jan 2026 14:39:43 GMT)
  • 「We introduce EverMemOS, a self-organizing memory operating system that implements an engram- inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection per- forms MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks.」とのこと
  • リポジトリはGitHub – EverMind-AI/EverMemOS: EverMemOS is an open-source, enterprise-grade intelligent memory system. Our mission is to build AI memory that never forgets, making every conversation built on previous understanding.
  • Controllable Memory Usage: Balancing Anchoring and Innovation in Long-Term Human-Agent Interaction [35.2]
    エージェントのメモリ依存を明示的かつユーザ制御可能な次元としてモデル化できることを示す。 Steerable Memory Agent, SteeMを提案する。
    論文  参考訳(メタデータ)   (Thu, 08 Jan 2026 16:54:30 GMT)
  • 「We then propose Steerable Memory Agent, SteeM, a framework that allows users to dynamically regulate memory reliance, ranging from a fresh- start mode that promotes innovation to a high- fidelity mode that closely follows interaction history.」とMemoryの利用度を制御するアイデア
  • SimpleMem: Efficient Lifelong Memory for LLM Agents [73.7]
    セマンティックロスレス圧縮に基づく効率的なメモリフレームワークSimpleMemを紹介する。 本稿では,情報密度とトークン利用量の最大化を目的とした3段階パイプラインを提案する。 ベンチマークデータセットを用いた実験により,提案手法は精度,検索効率,推論コストにおいて,ベースラインアプローチを一貫して上回っていることがわかった。
    論文  参考訳(メタデータ)   (Mon, 05 Jan 2026 21:02:49 GMT)
  • 「SimpleMem mitigates context inflation through three stages. (1) Semantic Structured Compression filters redundant interaction content and reformulates raw dialogue into compact, context-independent memory units. (2) Recursive Consolidation incrementally organizes related memory units into higher-level abstract representations, reducing redundancy in long-term memory. (3) Adaptive Query-Aware Retrieval dynamically adjusts retrieval scope based on query complexity, enabling efficient context construction under constrained token budgets.」というアプローチ。効果は大きそうではあるものの、これをもって「Semantic Lossless Compression」といってよいのだろうかというのは若干疑問。
  • リポジトリはGitHub – aiming-lab/SimpleMem: SimpleMem: Efficient Lifelong Memory for LLM Agents

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です