Agent Skills in the Wild: An Empirical Study of Security Vulnerabilities at Scale
Agent Skills in the Wild: An Empirical Study of Security Vulnerabilities at Scale [26.8] AIエージェントフレームワークの台頭はエージェントスキル、命令を含むモジュールパッケージ、エージェント機能を動的に拡張する実行可能なコードを導入した。 このアーキテクチャは強力なカスタマイズを可能にするが、スキルは暗黙の信頼と最小限の拒否によって実行され、重要なが不適合なアタックサーフェスを生み出す。 2つの主要な市場から42,447のスキルを収集し、この新興エコシステムの最初の大規模な経験的セキュリティ分析を行います。 論文参考訳(メタデータ) (Thu, 15 Jan 2026 12:31:52 GMT)
「We conduct the first large-scale empirical security analysis of this emerging ecosystem, collecting 42,447 skills from two major mar- ketplaces and systematically analyzing 31,132 using SkillScan, a multi-stage detection framework integrating static analysis with LLM-based semantic classification. Our findings reveal pervasive security risks: 26.1% of skills contain at least one vulnerability, spanning 14 distinct patterns across four categories—prompt injection, data exfiltration, privilege escalation, and supply chain risks. Data exfiltration (13.3%) and privilege escalation (11.8%) are most prevalent, while 5.2% of skills exhibit high-severity patterns strongly suggesting malicious intent.」となかなか衝撃的な報告。。