Aligning Agentic World Models via Knowledgeable Experience Learning

  • Aligning Agentic World Models via Knowledgeable Experience Learning [68.9]
    環境フィードバックをシンセサイザー化したWorld Knowledge Repositoryを構築するフレームワークであるWorldMindを紹介する。 WorldMindは、優れたクロスモデルとクロス環境転送性を備えたベースラインよりも優れたパフォーマンスを実現している。
    論文  参考訳(メタデータ)   (Mon, 19 Jan 2026 17:33:31 GMT)
  • 「 our World Knowledge Repository accumulates two distinct types of experience. First, Process Experience is derived from prediction errors to enforce physical feasibility, ensuring internal simulations strictly adhere to the immutable laws of reality. Second, Goal Experience is distilled from successful trajectories to serve as procedural heuristics, guiding the simulation to efficiently converge toward the task objective.」と2種類の情報を用いるタイプの手法
  • リポジトリはGitHub – zjunlp/WorldMind: Aligning Agentic World Models via Knowledgeable Experience Learning、プロジェクトサイトはWorldMind: Aligning Agentic World Models

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です