コンテンツへスキップ
- SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing [77.5]
本稿では,自己教師付き音声/テキスト表現学習のためのエンコーダ・デコーダ事前学習を探索する統一モーダルなSpeechT5フレームワークを提案する。 SpeechT5フレームワークは共有エンコーダデコーダネットワークと6つのモーダル固有(音声/テキスト)プレ/ポストネットで構成されている。 テキスト情報と音声情報を統一的な意味空間に整合させるため,テキストとテキストをランダムに混合したクロスモーダルベクトル量子化法を提案する。
論文 参考訳(メタデータ) (Thu, 14 Oct 2021 07:59:27 GMT)- T5に似た事前学習モデルを音声向けに構築、ASR、TTS、VC、SIDなど複数のタスクで効果を確認とのこと。TextlessNLPのような流れに向けた一歩になるのだろうか。
- ASR: Automatic Speech Recognition
- TTS: Text-To-Speech
- VC: Voice Conversion
- SID: Speaker IDentification