- Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.1]
本稿では,Large Language Models (LLMs) のプログラミングアシスタントとしてのサイバーセキュリティを促進するために開発された,包括的なベンチマークであるCyberSecEvalを提案する。 CyberSecEvalは、2つの重要なセキュリティ領域におけるLSMの徹底的な評価を提供する。
論文 参考訳(メタデータ) (Thu, 7 Dec 2023 22:07:54 GMT) - セキュリティ関連のベンチマークとして「安全でないコードの生成」「サイバー攻撃の支援に対するコンプライアンス」を評価するもの。Purple Llama CyberSecEval: A benchmark for evaluating the cybersecurity risks of large language models | Research – AI at Metaの立ち上げに伴うもの。
- 「On average, LLMs suggested vulnerable code 30% of the time over CYBERSECEVAL ’s test cases. Furthermore, models complied with 53% of requests to assist in cyberattacks on average across all models and threat categories.」とのことで道はながそう。GPT-4であれば大丈夫という結果でもない。
- リポジトリはPurpleLlama/CybersecurityBenchmarks at main · facebookresearch/PurpleLlama · GitHub