An Empirical Study of Mamba-based Language Models

  • An Empirical Study of Mamba-based Language Models [69.7]
    Mambaのような選択的な状態空間モデル(SSM)はトランスフォーマーの欠点を克服する。 同じデータセット上で訓練された8B-context Mamba, Mamba-2, Transformer モデルを直接比較する。 8BのMamba-2-Hybridは、12の標準タスクで8BのTransformerを上回っている。
    論文  参考訳(メタデータ)   (Wed, 12 Jun 2024 05:25:15 GMT)
  • Mambaの実験的検証。8B、3.5T tokensでmamba、mamba2、transformerを比較。「Our results show that while pure SSM-based models match or exceed Transformers on many tasks, both Mamba and Mamba-2 models lag behind Transformer models on tasks which require strong copying or in-context learning abilities (e g , five-shot MMLU, Phonebook Lookup) or long-context reasoning.」、「we find that the 8B-parameter Mamba2-Hybrid exceeds the 8B-parameter Transformer on all 12 standard tasks we evaluated (+2.65 points on average) and is predicted to be up to 8× faster when generating tokens at inference time.」との結果。今までの論文と比べて意外性はないが、包括的な検証はとても参考になる。ハイブリッド構成はとても有効な選択肢に見えた。
  • リポジトリはMegatron-LM/examples/mamba at ssm · NVIDIA/Megatron-LM · GitHub

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です