Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale [97.2] LLMは、デジタル環境と対話し、特定の目的を完遂する自律エージェントとして機能する。 デジタルタスクに対する大規模な直接的なデモが欠如していることもあって、正確性はまだ十分ではない。 我々は、この間接的な知識を大規模に直接監督するアプローチであるSynatraを提案する。 論文参考訳(メタデータ) (Tue, 24 Sep 2024 00:51:45 GMT)
「We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web.」と有効性を確認。「In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.1」コストパフォーマンスも優れる。