TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action

  • TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action [103.6]
    複雑・多段階・多モードタスクの性能向上を目的とした多モード大規模アクションモデルであるTACOを提案する。 推論中、TACOはチェーン・オブ・シント・アンド・アクション(CoTA)を生成し、OCR、深さ推定、電卓などの外部ツールを呼び出すことで中間ステップを実行する。 このデータセットにより、TACOは複雑な推論とアクションパスを学習し、直接回答だけでチューニングデータに基づいてトレーニングされた既存のモデルを上回ることができる。
    論文  参考訳(メタデータ)   (Sat, 07 Dec 2024 00:42:04 GMT)
  • 「Our TACO model is able to output a Chain-of Thought-and-Action (CoTA) and answer challenging questions based on the thoughts and action outputs」というモデルの提案。マルチモーダルなAction付きのモデル。GPT-4oなどを使って構築した合成データを活用とのこと。
  • プロジェクトサイトはTACO

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です