Benchmarking Large and Small MLLMs 

  • Benchmarking Large and Small MLLMs [71.8]
    大規模なマルチモーダル言語モデル(MLLM)は、マルチモーダルコンテンツの理解と生成において顕著な進歩を遂げている。 しかし、そのデプロイメントは、遅い推論、高い計算コスト、デバイス上のアプリケーションに対する非現実性など、重大な課題に直面している。 LLavaシリーズモデルとPhi-3-Visionによって実証された小さなMLLMは、より高速な推論、デプロイメントコストの削減、ドメイン固有のシナリオを扱う能力を備えた有望な代替手段を提供する。
    論文  参考訳(メタデータ)   (Sat, 04 Jan 2025 07:44:49 GMT)
  • MLLMの包括的評価。
  • 「GPT-4o establishes a new standard for multimodal understanding and reasoning across diverse input types, setting a benchmark in versatility and cognitive capacity.」のほか、「Although LLaVA-NeXT and Phi-3-Vision excel in specialized recognition tasks, they exhibit limitations in advanced reasoning and temporal sequence processing.」とのこと。
  • MSの調査でもあり、Phi4でのアップデートにも期待。microsoft/phi-4 · Hugging Face

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です