Preference Leakage: A Contamination Problem in LLM-as-a-judge
Preference Leakage: A Contamination Problem in LLM-as-a-judge [70.0] 審査員としてのLLM(Large Language Models)とLLMに基づくデータ合成は、2つの基本的なLLM駆動型データアノテーション法として登場した。 本研究では, 合成データ生成器とLCMに基づく評価器の関連性に起因するLCM-as-a-judgeの汚染問題である選好リークを明らかにする。 論文参考訳(メタデータ) (Mon, 03 Feb 2025 17:13:03 GMT)
LLM-as-a-jedgeを使用するときの潜在的なLeakの可能性について指摘した論文。同じモデル、派生モデル、同じファミリーのモデルでバイアスがどの程度か検証。「The results of our main experiment, measured using the proposed preference leakage score, reveal a clear bias in each judge toward its respective student model.」と今までも同じモデルの出力を好むような指摘はあったが、それを裏付ける結果となっている。「We also observe that this bias is more pronounced in comparable model pairs and larger student models.」の大きなモデルで問題が大きいというのも興味深い。