A Survey of Model Architectures in Information Retrieval
A Survey of Model Architectures in Information Retrieval [64.8] 機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。 従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。 我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。 論文参考訳(メタデータ) (Thu, 20 Feb 2025 18:42:58 GMT)
結論の「Information retrieval modeling has evolved from simple term matching to complex neural networks and LLM-driven approaches, significantly improving search capabilities. Key challenges ahead include balancing computational efficiency with performance, handling diverse data types, maintaining faithfulness and trustworthiness, and integrating with emerging technologies like autonomous agents.」はその通りと思う。