Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection 

  • Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.9]
    Best-of-N (BON) サンプリングのような推論時間法は、パフォーマンスを改善するための単純で効果的な代替手段を提供する。 本稿では,反復的改良と動的候補評価,検証器による選択を併用した反復的エージェント復号(IAD)を提案する。
    論文  参考訳(メタデータ)   (Wed, 02 Apr 2025 17:40:47 GMT)
  • 「In this work, we proposed IAD : an iterative decoding approach for AI agent alignment with black box access which highlights the effectiveness of iterative decoding (guided by a verifier) for these complex agentic tasks.」と(よくある)API利用を前提としたエージェントのパフォーマンス改善手法の提案。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です