- Can LLM feedback enhance review quality? A randomized study of 20K reviews at ICLR 2025 [115.9]
Review Feedback Agentは、あいまいなコメント、コンテンツの誤解、レビュアーへの専門的でない発言に対する自動的なフィードバックを提供する。 ICLR 2025で大規模なランダム化制御研究として実装された。 フィードバックを受けたレビュアーの27%がレビューを更新し、エージェントからの12,000以上のフィードバック提案がレビュアーによって取り入れられた。
論文 参考訳(メタデータ) (Sun, 13 Apr 2025 22:01:25 GMT) - ICLRによるReview Feedback Agentの効果検証、「This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers.」と肯定的な結果。
- リポジトリはGitHub – zou-group/review_feedback_agent
- 本論とは関係ないが「Authors at AI conferences increasingly report receiving short, vague reviews with criticisms like ‘not novel’ or ‘not state-of-the-art (SOTA)’ 」というのは大変そうな・・・
似て非なる論文ではあるが、「We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review.」というAI Scientist-v2も興味深い。
- The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search [16.9]
AI Scientist-v2は、AIが生成した最初のピアレビュー受け入れワークショップ用紙を生産できるエンドツーエンドのエージェントシステムである。 科学的な仮説を反復的に定式化し、実験を設計し、実行し、データを分析し、視覚化し、科学的な原稿を自律的に作成する。 ある写本は、平均的な人間の受け入れ閾値を超える十分なスコアを達成し、完全なAI生成論文がピアレビューをうまくナビゲートした最初の事例となった。
論文 参考訳(メタデータ) (Thu, 10 Apr 2025 18:44:41 GMT) - リポジトリはGitHub – SakanaAI/AI-Scientist-v2: The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search