How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations 

  • How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations [112.6]
    エージェントが人間とエージェントの労働者の直接比較を初めて提示することで、エージェントがどのように人間の仕事をするかを考察する。 結果が88.3%速く、コストが90.4-96.2%低いことが判明した。
    論文  参考訳(メタデータ)   (Sun, 26 Oct 2025 18:10:22 GMT)
  • 人間とエージェントの比較、様々な課題も指摘されているが「Compared to an average human worker, agents deliver work 88.3–96.6% faster and at 90.4–96.2% lower costs. Our induced workflows naturally suggest a division of labor: readily programmable steps can be delegated to agents for efficiency, while humans handle the steps where agents fall short.」との結果はやや驚き。
    • 「One quarter of human activities we studied involve AI tools, with most used for augmentation purposes: integrating AI into existing workflows with minimal disruption, while improving efficiency by 24.3%. In contrast, AI automation markedly reshapes workflows and slows human work by 17.7%, largely due to additional time spent on verification and debugging (Figure 5).」はまぁそんなものか、という印象はあるが。。
  • ツールキットが公開されている。GitHub – zorazrw/workflow-induction-toolkit: A toolkit to induce interpretable workflows from raw computer-use activities.
  • Remote Labor Index: Measuring AI Automation of Remote Work [46.5]
    AIは、研究指向の知識と推論のベンチマークを急速に進歩させたが、これらの成果が経済的価値と自動化にどのように変換されるかは、まだ不明である。 これを測定するために、実世界の経済的に価値のあるプロジェクトからなる広範囲にわたるマルチセクタベンチマークであるRemote Labor Index (RLI)を導入する。
    論文  参考訳(メタデータ)   (Thu, 30 Oct 2025 17:58:04 GMT)
  • こちらは「RLI establishes an economically grounded measure of AI automation capacity, with 240 projects spanning 23 domains of digital freelance work, each anchored in demonstrated market value. Frontier AI agents perform near the floor on RLI, achieving an automation rate of less than 3%, revealing a stark gap between progress on computer use evaluations and the ability to perform real and economically valuable work.」と指摘。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です