Evaluating Large Language Models in Scientific Discovery
Evaluating Large Language Models in Scientific Discovery [91.7] 大規模言語モデル (LLMs) は科学研究にますます応用されてきているが、科学ベンチマークでは非文脈化された知識を探索している。 生物, 化学, 材料, 物理にまたがるLSMを評価するシナリオグラウンドベンチマークを提案する。 このフレームワークは、(i)シナリオタイドアイテムの質問レベル精度と(ii)プロジェクトレベルのパフォーマンスの2つのレベルでモデルを評価する。 論文参考訳(メタデータ) (Wed, 17 Dec 2025 16:20:03 GMT)
AIに科学的発見はできるのか?という問いに対する評価。クイズのような形式ではなく、研究プロジェクト、現場の研究シナリオに基づく評価。「Large performance variation in research scenarios leads to changing choices of the best performing model on scientific discovery projects evaluated, suggesting all current LLMs are distant to general scientific “superintelligence”.」とのことではあるが、有効性も感じる印象を持った。
「we observe striking exceptions to the positive correlation between question- and project-level performance. 」「This suggests that rigorous knowledge of explicit structure-property relationships is not a strict prerequisite for LLM-driven discovery. Rather, the capacity to discern optimization directions and facilitate serendipitous exploration appears more critical.」という指摘が面白い。どのモデルが良いかも問題によってかなり状況が変わるよう。