コンテンツへスキップ
- GNN is a Counter? Revisiting GNN for Question Answering [105.8]
State-of-the-art Question Answering (QA)システムは通常、LMに符号化された知識にアクセスするために、訓練済み言語モデル(LM)を使用する。 知識グラフ(KG)の推論を行うグラフニューラルネットワーク(GNN)に基づく精巧に設計されたモジュール 我々の研究は、既存の知識を意識したGNNモジュールがカウントなどの単純な理由のみを実行することを明らかにしている。
論文 参考訳(メタデータ) (Thu, 7 Oct 2021 05:44:52 GMT)- QAタスクの高精度化ではGraph Neural Networkが使われることが多い。Graph Soft Counter (GSC)というEdge encoderとスコアを合算レイヤーのみを持つシンプルな構造で既存の複雑なGNNより良い性能を達成できたとのこと。モデルサイズはわずか3Kと驚きの結果。
- MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer [24.5]
モバイルデバイス用の軽量ビジョントランスフォーマであるMobileViTを紹介する。 以上の結果から,MobileViT は CNN および ViT ベースのネットワークを,タスクやデータセット間で大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (Tue, 5 Oct 2021 17:07:53 GMT)- パラメータ数が同等のMobileNetv3(CNN系)、DeIT(ViT系)を上回る性能を出せる軽量なVision Transformerの報告。結局、ViTs are slower than CNNsって・・・とは思わなくはないが、Transformerの利用は広まっているのでハードウェア演算による支援が普通になる未来を期待。
- この論文はAppleからだしTransformer向けの計算支援をiPhoneに組み込んでほしい。(そしてFuguMTも高速化させたい)
- HowSumm: A Multi-Document Summarization Dataset Derived from WikiHow Articles [1.1]
HowSummは、クエリ中心のマルチドキュメント要約(qMDS)タスクのための新しい大規模データセットである。 このユースケースは、既存のマルチドキュメント要約(MDS)データセットでカバーされているユースケースとは異なる。 我々は,HowSumm を利用して要約研究を進めることを提案する。
論文 参考訳(メタデータ) (Thu, 7 Oct 2021 04:44:32 GMT)- wikiHowから作られたquery-focused multi-document summarization (qMDS)用のデータセット。wikiHowの記事中、(短い)ステップからのサマリーが84K (HowSumm-Step)、(長い)メソッドからのサマリーが11K (HowSumm-Method)と2種類データがある。データ量も大きく、この手のデータセットは非常に貴重。
- ライセンスはCC BY-NC-SA 3.0で商用利用は禁止されている。
- リポジトリはhttps://github.com/odelliab/HowSumm
- ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods [89.6]
実画像上でのリアルな洪水をシミュレートする手法を提案する。 本研究では、教師なし領域適応と条件付き画像生成のためのシミュレーションデータと実データの両方を活用するモデルであるClimateGANを提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 6 Oct 2021 15:54:57 GMT)- GANを用いて災害時の画像を作ることで防災に役立てようという研究。データとして実世界の画像(被災画像を集めてから対応する平常時の画像を集める)、シミュレーション環境で作成した画像(Unity3D内で洪水相当の画像を作成)を併用している。やりたい事から構築までの流れが具体的・実践的でありがたい論文。
- Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy [68.9]
異常の希少性のため, 系列全体と強い関連性を構築することは困難であり, 関連性は主に隣接点に集中していることが観察された。 通常の点と異常点の間に本質的に区別可能な基準を示しており、これはAssociation Discrepancy として強調する。関係の一致を計算するために,Anomaly-Attention機構を備えたAnomaly-Transformer を提案する。Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する
論文 参考訳(メタデータ) (Wed, 6 Oct 2021 10:33:55 GMT)- Transformerを用いて優れた性能の異常検知が可能との論文。概要の通り単純なTransforerではない。Ablation studyの分析が面白い。
- BadPre: Task-agnostic Backdoor Attacks to Pre-trained NLP Foundation Models [25.9]
我々は,訓練済みNLPモデルに対する最初のタスク非依存のバックドアアタックを提案する。 事前訓練されたモデルにバックドアを埋め込む際に、下流タスクに関する事前情報を必要としない。 実験結果から,本手法は,幅広い下流NLPタスクを効果的かつステルスな方法で攻撃できる可能性が示唆された。
論文 参考訳(メタデータ) (Wed, 6 Oct 2021 02:48:58 GMT)- 事前学習モデルを活用する形のNLPが流行しているが、その事前学習モデルにバックドアを仕込むことが可能という報告。下流タスクによらず特定ワードでの性能を著しく劣化されることが可能。
- Data Augmentation Approaches in Natural Language Processing: A Survey [28.9]
データ拡張(DA)は、ディープラーニング技術が失敗する可能性のあるデータの不足シナリオを軽減する。 DA手法の主な焦点の1つは、トレーニングデータの多様性を改善することである。 DA手法をパラフレーズ化, ノイズ化, サンプリングなど, 拡張データの多様性に基づいて3つのカテゴリに分類する。
論文 参考訳(メタデータ) (Tue, 5 Oct 2021 07:35:32 GMT)- 自然言語処理におけるデータ拡張の幅広いサーベイ。言い換え、ノイズ付与、サンプリングの3カテゴリで整理を行っている。42ページ、引用論文数122と規模が大きい。論文中に出てくる図が非常に参考になる。
- FooDI-ML: a large multi-language dataset of food, drinks and groceries images and descriptions [0.0]
このデータセットは、東ヨーロッパと西アジア(ウクライナ語やカザフ語など)の870万の言語のサンプルを含む33の言語を記述している。 データセットにはスペイン語や英語など、広く話されている言語も含まれている。
論文 参考訳(メタデータ) (Tue, 5 Oct 2021 13:33:08 GMT)
- On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation [63.9]
事前学習(PT)と後方翻訳(BT)は単言語データを利用するためのシンプルで強力な方法である。 本稿では,PTとBTの相補性について検討する。 我々は、WMT16英語-ルーマニア語と英語-ロシア語ベンチマークで最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (Tue, 5 Oct 2021 04:01:36 GMT)- Pre-Trainingはエンコーダにとってより有益であり、Back-Translationはデコーダを主に改善するとの報告。両社は相互補完可能でTagged BTはより有益であるとのこと。
- Multi-Document Keyphrase Extraction: A Literature Review and the First Dataset [24.9]
文書の集合を記述するのに有用であるにもかかわらず、多文書キーフレーズ抽出は頻繁に研究されている。 ここでは、最初の文献レビューとタスクのための最初のデータセットであるMK-DUC-01を紹介し、新しいベンチマークとして機能する。
論文 参考訳(メタデータ) (Sun, 3 Oct 2021 19:10:28 GMT)- 文書からのキーフレーズ抽出は重要なタスクで、複数文書をまとめて評価したい場合も多い。本論文ではDUC-2001をベースにマルチドキュメントなキーフレーズ抽出用データセットを作成、現時点の手法をConcat(連結したドキュメントでフレーズ抽出)とMerge(各ドキュメントでフレーズ抽出した結果をマージして再処理)で比較している。