Retrieval-Augmented Generation for Natural Language Processing: A Survey 

  • Retrieval-Augmented Generation for Natural Language Processing: A Survey [25.1]
    検索強化生成(RAG)は、外部知識データベースを利用して大きな言語モデルを拡張する。 本稿では,RAGの重要技術,特に検索器と検索融合について概説する。 RAGは、自然言語処理のタスクや産業シナリオで使われる。
    論文  参考訳(メタデータ)   (Thu, 18 Jul 2024 06:06:53 GMT)
  • 実用上重要なRAGのサーベイ。
  • 構成要素の選択肢が多く、整理された情報はとてもありがたい。

Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems

  • Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems [124.8]
    我々は、文書のHaystackを合成する手順を設計し、特定のテキストが文書間で繰り返されることを保証します。 すると、”Summary of a Haystack”(SummHay)タスクは、Haystackを処理し、クエリ、関連する洞察を特定し、ソースドキュメントを正確に引用する要約を生成するシステムを必要とする。
    論文  参考訳(メタデータ)   (Mon, 01 Jul 2024 15:23:42 GMT)
  • 長文・大量の文書を要約できるかに関する(合成データによる)SummHay ベンチマークを構築、様々なLLM及びRAGを比較した論文。「achieving strong coverage of key insights in a large corpus of text does not require retrieval, given a sufficiently capable long-context LLM.」、「for use-cases where citation quality is important, optimizing retrieval is paramount: it removes irrelevant documents from the summarizer’s context, narrowing and focusing options for citation.」とユースケースによってRAGの有効性が変わるよう。Gemini 1.5 ProはRAGなしでも相当有効に機能しているようなことも興味深い。Retrieveの戦略も複数比較されており参考になる。
  • リポジトリはGitHub – salesforce/summary-of-a-haystack: Codebase accompanying the Summary of a Haystack paper.

Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track

  • Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track [51.3]
    RAGベースの検索システムを構築、テスト、視覚化、体系的に評価するためのアリーナを持つことが不可欠である。 TREC 2024 RAG Trackを提案する。
    論文  参考訳(メタデータ)   (Mon, 24 Jun 2024 17:37:52 GMT)
  • すごい名前のRAG評価用ベンチマーク・フレームワーク
  • リポジトリはGitHub – castorini/ragnarok: Retrieval-Augmented Generation battle!

SeaKR: Self-aware Knowledge Retrieval for Adaptive Retrieval Augmented Generation

CodeRAG-Bench: Can Retrieval Augment Code Generation? 

  • CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.4]
    検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。 まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。 CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
    論文  参考訳(メタデータ)   (Thu, 20 Jun 2024 16:59:52 GMT)
  • コード生成におけるRAGの検証。コード生成では効果があるが、Retrieveが難しいという意外な結果。
  • プロジェクトサイトはCodeRAG-Bench: Can Retrieval Augment Code Generation? (code-rag-bench.github.io)

METRAG: Multi–layEred Thoughts enhanced RetrievalAugmented Generation framework

  • Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts [39.5]
    我々は、類似性は必ずしもパナセアではなく、類似性に完全に依存することは、時として検索拡張生成の性能を低下させるであろうと論じている。 我々はMulti layEred ThoughtsEnhanced Retrieval Augmented GenerationフレームワークであるMetRagを提案する。
    論文  参考訳(メタデータ)   (Thu, 30 May 2024 09:50:38 GMT)
  • ただの類似検索によるRAGではなく、類似検索+supervisedな学習を行ったモデルの組み合わせにさらに適応型要約を使ってRAGを行うアプローチの提案
  • 非常に重そうなアプローチではあるがベンチマークでは他手法に比べて優れた結果を出している

xRAG、FlashRAG、HippoRAG

RAG関連の研究はとても盛ん

  • xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token [108.7]
    xRAGは、検索拡張生成に適した、革新的なコンテキスト圧縮手法である。 xRAGは、言語モデル表現空間に文書の埋め込みをシームレスに統合する。 実験の結果、xRAGは6つの知識集約タスクで平均10%以上の改善を達成していることがわかった。
    論文  参考訳(メタデータ)   (Wed, 22 May 2024 16:15:17 GMT)
  • プロンプトに検索結果を投入する一般的なRAGではなくProjectorとドキュメントを表すトークンを介す方式の新たなRAG手法の提案。モダリティの拡張に近いイメージのよう。
  • リポジトリはGitHub – Hannibal046/xRAG: Source code for xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token
  • FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [32.8]
    FlashRAGは、研究者が既存のRAGメソッドを再現し、統一されたフレームワーク内で独自のRAGアルゴリズムを開発するのを支援するために設計された、効率的でモジュール化されたオープンソースツールキットである。 私たちのツールキットには、カスタマイズ可能なモジュラーフレームワーク、実装済みRAGワークの豊富なコレクション、包括的なデータセット、効率的な補助的な前処理スクリプト、広範囲で標準的な評価指標など、さまざまな機能があります。
    論文  参考訳(メタデータ)   (Wed, 22 May 2024 12:12:40 GMT)
  • RAGに関連する様々な手法が使えるツールキット。ベンチマークデータも整理されているのが素晴らしい
  • リポジトリはGitHub – RUC-NLPIR/FlashRAG: ⚡FlashRAG: A Python Toolkit for Efficient RAG Research
  • HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models [24.5]
    我々は,ヒトの長期記憶の海馬索引付け理論に触発された新しい検索フレームワークであるHippoRAGを紹介する。 その結果,本手法は最先端の手法を最大20%向上させることができた。 提案手法は,既存の手法に及ばない新たなシナリオに対処することができる。
    論文  参考訳(メタデータ)   (Thu, 23 May 2024 17:47:55 GMT)
  • 海馬を模したRAGとのこと。動作は「Our novel design first models the neocortex’s ability to process perceptual input by using an LLM to transform a corpus into a schemaless knowledge graph (KG) as our artificial hippocampal index.Given a new query, HippoRAG identifies the key concepts in the query and runs the Personalized PageRank (PPR) algorithm [23] on the KG, using the query concepts as the seeds, to integrate information across passages for retrieval. PPR enables HippoRAG to explore KG paths and identify relevant subgraphs, essentially performing multi-hop reasoning in a single retrieval step.」ということでKnowledge Graphをうまく使うアプローチ。
  • リポジトリはGitHub – OSU-NLP-Group/HippoRAG: HippoRAG is a novel RAG framework inspired by human long-term memory that enables LLMs to continuously integrate knowledge across external documents.

RAFT: Retrieval Augmented Fine Tuning

  • RAFT: Adapting Language Model to Domain Specific RAG [75.6]
    本稿では、ドメイン内の「オープンブック」設定において、モデルが質問に答える能力を改善するためのトレーニングレシピであるRetrieval Augmented FineTuning(RAFT)を紹介する。 RAFTは、質問に答える助けとなる関連文書から、動詞の正しいシーケンスを引用することで、これを達成します。 RAFTは、PubMed、HotpotQA、Gorillaデータセット全体のモデルのパフォーマンスを一貫して改善する。
    論文  参考訳(メタデータ)   (Fri, 15 Mar 2024 09:26:02 GMT)
  • RAGのためのfine tuning手法の提案、「RAFT is a training strategy designed to enhance the model’s performance in answering questions within a specific domain, in “open-book” settings.」
  • リポジトリはGitHub – ShishirPatil/gorilla: Gorilla: An API store for LLMs

Benchmarking Retrieval-Augmented Generation for Medicine / Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE)

  • Benchmarking Retrieval-Augmented Generation for Medicine [30.4]
    大規模言語モデル(LLM)は、幅広い医療質問応答(QA)タスクにおいて最先端のパフォーマンスを達成した。 Retrieval-augmented Generation(RAG)は有望なソリューションであり、広く採用されている。 我々は、5つの医療QAデータセットから7,663の質問を含む第一種ベンチマークであるMIRAGE(Medicical Information Retrieval-Augmented Generation Evaluation)を提案する。
    論文  参考訳(メタデータ)   (Tue, 20 Feb 2024 17:44:06 GMT)
  • ベンチマークを作成し医療分野でのRAGの有効性について検証、CoTとの比較や使用しているLLMごとの差異などとても興味深い結果になっている。BM25ってやはりかなり優秀なのでは。
  • リポジトリはMIRAGE:Teddy-XiongGZ/MIRAGE: Official repository of the MIRAGE benchmark (github.com)、MEDRAG:Teddy-XiongGZ/MedRAG: Code for the MedRAG toolkit (github.com)

HyKGE: Hypothesis Knowledge Graph Enhanced

  • Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models [21.2]
    我々は、検索補助生成(RAG)とファインチューニング(FT)の2つの戦略に焦点を当てる。 本稿では,医療用LLMの強化に知識グラフを活用した仮説知識グラフ拡張(HyKGE)フレームワークを提案する。
    論文  参考訳(メタデータ)   (Tue, 26 Dec 2023 04:49:56 GMT)
  • LLM + Knowledge GraphなRAGの提案。