- The Call for Socially Aware Language Technologies [94.7]
NLPが機能する社会環境の要因、文脈、意味の認識の欠如である。 我々は、NLPが社会意識を発達させる上で大きな課題が残っており、この分野の新しい時代の始まりであると主張している。社会的意識をNLPモデルに統合することで、アプリケーションはより自然で、有用で、安全になり、新しい可能性を開く。
論文 参考訳(メタデータ) (Fri, 03 May 2024 18:12:39 GMT) - LLM全盛のNLPを社会実装する際に考えるべきものがまとまっている。ガイドラインなどもあるが、NLPのような分野に特化した論文も重要。
- この著者陣をして「As LLMs take a more central role in AI research more broadly, many traditional NLP tasks have become obsolete.」というのも時代を感じるが、「We are more than just language factories, and language plays just one part in our complex social interactions.」は忘れてはいけない視点。
投稿者: staka
You Only Cache Once: Decoder-Decoder Architectures for Language Models
- You Only Cache Once: Decoder-Decoder Architectures for Language Models [132.4]
大規模言語モデルのためのデコーダ・デコーダアーキテクチャであるYOCOを導入する。 YOCOはキーと値のペアを一度だけキャッシュする。 全体的なモデルはデコーダのみのTransformerのように振る舞うが、YOCOは一度だけキャッシュする。
論文 参考訳(メタデータ) (Thu, 09 May 2024 14:12:45 GMT) - KVキャッシュ・計算ともに効率化可能なDecoder-Decoderモデル。3Bでの検証結果では同規模のOpenLLaMA、StableLMを超え、高速化効果が高い長いコンテキストでのNeedle-in-a-haystackも良好とのこと。ZeroSCROLLS benchmarkで長さが伸びた時も(MambaやHybridH3と異なり)Transformer同等の結果になっているのがすごい。
- リポジトリはunilm/YOCO at master · microsoft/unilm · GitHub
A Survey on Diffusion Models for Time Series and Spatio-Temporal Data
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1]
時系列データの研究は、時間とともにトレンドや異常を理解するために不可欠であり、様々な分野にわたる予測的な洞察を可能にする。 近年,拡散モデルが時系列やS時間データマイニングに広く応用されている。 時系列およびS時間データにおける拡散モデルの利用について概説し、それらをモデルカテゴリ、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。 本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (Mon, 29 Apr 2024 17:19:40 GMT) - Diffusionモデルの時系列データへの応用に関するサーベイ。「They are called after the mathematical process of diffusion, which is commonly used to describe phenomena such as particle movement in a gas or liquid.」との記載を見ると確かに歴史的にはこの応用の方がしっくりくるのか。。
- リポジトリ GitHub – yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model: A list of current Diffusion Model for Time Series and SpatioTemporal Data with awesome resources (paper, application, review, survey, etc.).、も参考になる。
NeurDB: An AI-powered Autonomous Data System
- NeurDB: An AI-powered Autonomous Data System [33.3]
我々は,AI設計を各主要システムコンポーネントに完全に取り入れるように設計された次世代データシステムであるNeurDBを紹介する。 我々はNeurDBの概念的およびアーキテクチャ的概要を概説し、その設計選択と重要なコンポーネントについて議論し、その現況と今後の計画について報告する。
論文 参考訳(メタデータ) (Tue, 07 May 2024 00:51:48 GMT) - AIを使った自律的データベースを主張するDBの紹介。DBの役割とは何かを考えつつ、将来どうなるのかが楽しみなところ。
- サイトはNeurDB | AI-powered Autonomous Data System
DeepSeek v2, Llama 3 Youko 8B, AlphaFold 3
来週OpenAIから大きな発表があるとアナウンスされているが、今週もLLM関連の話題は多かった。注目はMoEなDeepSeek v2でありコンテキスト長、性能とも非常に期待できそう。日本語話者としてはLlama 3の日本語強化バージョンであるLlama 3 Youko 8Bにも注目である。
rinna、Llama 3の日本語継続事前学習モデル「Llama 3 Youko 8B」を公開|rinna株式会社
そして、AlphaFold3の論文がNatureに発表されている。LLM関連ではないがモデルの意義や影響は大きい。最新アーキテクチャの適用など研究を続け、かつ、成果を出しているのがすごい。
Google DeepMind and Isomorphic Labs introduce AlphaFold 3 AI model (blog.google)
- DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model [0.0]
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference。 DeepSeek-V2は、MLA(Multi-head Latent Attention)やDeepSeekMoEといった革新的なアーキテクチャを採用している。合計パラメータは236Bで、そのうち21Bはトークンごとに活性化され、128Kトークンのコンテキスト長をサポートする。 DeepSeek-V2はDeepSeek 67Bと比較して大幅に性能が向上し、トレーニングコストは42.5%削減された。
論文 参考訳(メタデータ) (Tue, 07 May 2024 15:56:43 GMT) - Activeなパラメータが20B程度でMixtral 8x22BやLlama 3 70Bと競合する性能を主張、ライセンスは独自だがかなり寛容的なものに見える。
- リポジトリはGitHub – deepseek-ai/DeepSeek-V2、Weightはdeepseek-ai/DeepSeek-V2 · Hugging Face、deepseek-ai/DeepSeek-V2-Chat · Hugging Face
Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond
- Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.2]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している 本調査では,世界モデルの最新動向を包括的に調査する。 我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (Mon, 06 May 2024 14:37:07 GMT) - SoraがWorld simulatorとして機能しうるかは賛否が分かれているが、より広く(自動運転や自律エージェントなど)World simulatorになりうる生成系AIのサーベイ。「we expect world models to possess the ability of counterfactual reasoning, whereby outcomes are inferred through rational imagining.」はその通りで現時点ではまだ困難という印象を受けたが、実現できる未来はすぐだったりするのだろうか。
- リポジトリも参考になる GitHub – GigaAI-research/General-World-Models-Survey
Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense
- Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.1]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。 本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LLMの能力と限界について検討する。
論文 参考訳(メタデータ) (Tue, 07 May 2024 20:28:34 GMT) - 国(本件検証対象は中国、インド、イラン、ケニア、米国)によって違う常識がLLMでどう対応されているか調査した論文。「Our findings indicate that LLMs tend to associate general commonsense with cultures that are well-represented in the training data, and that LLMs have uneven performance on cultural commonsense, where they underperform for lessrepresented cultures.」に違和感はない。使用言語でほぼ決まるかとおもったら影響はあるが決定的ではないのが若干意外。
- リポジトリはhttps://github.com/ MichiganNLP/LLM_cultural_commonsenseとのことだが、現時点では404
CC2Vec
- CC2Vec: Combining Typed Tokens with Contrastive Learning for Effective Code Clone Detection [20.7]
CC2Vecは、単純なコードクローンを素早く識別するために設計された新しいコード符号化手法である。 広く使われている2つのデータセット(BigCloneBenchとGoogle Code Jam)上でCC2Vecを評価する。
論文 参考訳(メタデータ) (Wed, 01 May 2024 10:18:31 GMT) - 「In this paper, we introduce CC2Vec, a novel code encoding method designed to swiftly identify simple code clones while also enhancing the capability for semantic code clone detection.」とのこと。意味まで考慮して判定していけるのはすごい。
- リポジトリはGitHub – CC2Vector/CC2Vec
Why Tabular Foundation Models Should Be a Research Priority
- Why Tabular Foundation Models Should Be a Research Priority [65.8]
テーブルデータは、多くの分野において支配的なモダリティであるが、研究の注意がほとんど与えられず、スケールとパワーの面ではかなり遅れている。 私たちは現在、表形式の基礎モデル、あるいはLTM(Large Tabular Model)と呼ばれるものの開発を始める時が来たと信じています。
論文 参考訳(メタデータ) (Thu, 02 May 2024 10:05:16 GMT) - Large Tabular Model、欲しいと思いつつ汎用的にできるのか&コストが見合うのかは論文を読んでなお結構疑問
Causal Evaluation of Language Models
- Causal Evaluation of Language Models [33.3]
言語モデルの因果的推論能力を評価するための総合的なベンチマークとして,CaLM(Causal Evaluation of Language Models)がある。 CaLMは4つのモジュールからなる分類法であり、因果的対象(評価対象)、適応(結果の取得方法)、メートル法(結果の測定方法)、エラー(悪い結果の分析方法)である。
論文 参考訳(メタデータ) (Wed, 01 May 2024 16:43:21 GMT) - LLMの因果的な推論を評価するためのベンチマーク、Causal Evaluation of Language Models (CaLM)の提案、GPT-4がLeaderboardトップだが、最新のモデルでの検証結果を知りたいところ
- プロジェクトサイトはCausal Evaluation of Language Models (opencausalab.github.io)