GTA: A Benchmark for General Tool Agents 

  • GTA: A Benchmark for General Tool Agents [32.4]
    229個の実世界のタスクと実行可能なツールチェーンを設計し、主要な大言語モデル(LLM)を評価する。 GPT-4 はタスクの 50% 以下であり,ほとんどの LLM は 25% 以下である。 この評価は、現実シナリオにおける現在のLLMのツール利用能力のボトルネックを明らかにし、汎用ツールエージェントを前進させるための今後の方向性を提供する。
    論文  参考訳(メタデータ)   (Thu, 11 Jul 2024 17:50:09 GMT)
  • リアルなシナリオでツールを利用して問題を解くエージェントの能力を評価するベンチマーク。想定されているツールはOCRやDrawBox、Calculator、TextToImageなど14種類。「Our findings show that realworld user queries are challenging for existing LLMs, with GPT-4 completing less than 50% of the tasks and most LLMs achieving below 25%.」とのこと。
  • リポジトリはGitHub – open-compass/GTA: Official repository for paper “GTA: A Benchmark for General Tool Agents”

sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting 

  • sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting [27.1]
    本稿では,多言語合成指導調律データセット sPhinX を作成するための新しいレシピを提案する。 SPhinXは、命令応答対を英語から50言語に選択的に翻訳することで作成される。 Phi-3-Small と Mistral-7B の2つの最先端モデルを微調整するために sPhinX の有効性を検証した。
    論文  参考訳(メタデータ)   (Sat, 13 Jul 2024 13:03:45 GMT)
  • 「To mitigate this issue, we prompt GPT-4 to selectively translate the instructions, so that the tasks are translated into the appropriate language without changing the semantic meaning.」とLLMを用いた機械翻訳を有効に使った多言語fine tuning。
  • 「We devise LAnguage-Specific N-shot Guided Instruction fine-tuning (LANG) strategy for enhancing the multilingual capabilities of LLMs」を含め有効だとは思うのだが現時点ではライセンス上使いにくい・・・(ライセンス的にOKなNemotronだと現実的なのか気になるところ)

Learning to Refuse: Towards Mitigating Privacy Risks in LLMs

  • Learning to Refuse: Towards Mitigating Privacy Risks in LLMs [6.7]
    大規模言語モデル(LLM)は、自然言語の理解と生成において顕著な能力を示す。 本研究は、LLMが完全再トレーニングを必要とせず、特定の個人のプライベートデータを保護できることの課題に対処する。 プライバシ保護のためのネーム・アウェア・アンラーニング・フレームワーク(NAUF)を導入する。
    論文  参考訳(メタデータ)   (Sun, 14 Jul 2024 03:05:53 GMT)
  • Machine Unlearningのためのベンチマーク、RETURN: Real-world pErsonal daTa UnleaRNing datasetを構築。NameAware Refusal Answer(個人名に対する質問への回答拒否)とContrastive Data Augmentation(個人に対する質問を拡張しデータ不足を解消)を用いたNAUF: Name-Aware Unlearning Framework  で優れた性能を達成と報告。
  • リポジトリはGitHub – zhliu0106/learning-to-refuse: Official Implementation of “Learning to Refuse: Towards Mitigating Privacy Risks in LLMs”

Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models

  • Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models [32.3]
    多様な機能にもかかわらず、Large Language Models (LLM) は様々な長所と短所を示す。 これらの課題に対処するため、最近の研究はLLMの協調戦略を探求している。 本稿では,この新たな研究領域の概要を概観し,そのようなコラボレーションの背景にあるモチベーションを明らかにする。
    論文  参考訳(メタデータ)   (Mon, 08 Jul 2024 16:29:08 GMT)
  • 複数のLLMをうまく使う方法のサーベイ
  • 研究領域がとても広いことがよくわかる(そして絵がかわいい)

LLMBox: A Comprehensive Library for Large Language Models 

  • LLMBox: A Comprehensive Library for Large Language Models [109.2]
    本稿では,大規模言語モデル (LLM) の開発, 使用, 評価を容易にするために, 包括的で統一されたライブラリ LLMBox を提案する。 このライブラリには,(1)多様なトレーニング戦略の柔軟な実装を支援する統一データインターフェース,(2)広範囲なタスクやデータセット,モデルをカバーする包括的な評価,(3)ユーザフレンドリさや効率性など,より実践的な考慮,という3つのメリットがある。
    論文  参考訳(メタデータ)   (Mon, 08 Jul 2024 02:39:33 GMT)
  • LLM関連のもろもろを集めたライブラリ。必要なものが集まっていると便利というのと、GPUメモリの必要量などの情報がまとまっているのもありがたい。
  • リポジトリはGitHub – RUCAIBox/LLMBox: A comprehensive library for implementing LLMs, including a unified training pipeline and comprehensive model evaluation.

GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning 

  • GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning [48.7]
    PEFT法を改良型Retrieval-Enhanced Transformer (RETRO) およびベースラインGPTモデルに適用する。 本稿では、RETROモデルが、独自の事前学習プロセスにより、ゼロショット設定でGPTモデルより優れていることを示す。 本研究は, GPTモデルとRETROモデルの両方に適用された各種PEFT法をRAGと統合した最初の包括的比較である。
    論文  参考訳(メタデータ)   (Fri, 5 Jul 2024 14:16:47 GMT)
  • タイトルそのままGPT vs RETRO。

Case2Code: Learning Inductive Reasoning with Synthetic Data

  • Case2Code: Learning Inductive Reasoning with Synthetic Data [105.9]
    プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。 まず、合成したCase2Codeタスクにおける代表LLMを評価し、LLMにおいてケース・ツー・コード誘導が困難であることを実証する。 実験結果から,このような帰納的学習は,Case2Codeの性能だけでなく,学習用LLMの各種符号化能力の向上にも寄与することがわかった。
    論文  参考訳(メタデータ)   (Wed, 17 Jul 2024 11:35:00 GMT)
  • 解くのが難しい「Case2Code is a program synthesis task that targets the reconstruction of unknown programs based on observations of the program behaviors.」というタスクのため合成データを作成、一般的なLLMではスコアが低いことを検証。次に合成データを使ったfine tuningの有効性を示した論文。いまいち納得感が薄いが「We believe synthetic Case2Code is a promising way to continue improving the LLMs when human-generated data is exhausted.」というのが結論であればそれは示せているのか・・・?
  • リポジトリはGitHub – choosewhatulike/case2code

Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?

  • Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.8]
    我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。 Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。 これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
    論文  参考訳(メタデータ)   (Mon, 15 Jul 2024 17:54:37 GMT)
  • マルチモーダルエージェントのためのベンチマーク、対象タスクは「494 real-world tasks across the complete data science and engineering workflows (from data warehousing to orchestration)」とこれが自動化されると影響は少なくなさそう(ただしAutoMLなど過去から自動化を目指してきた業務ではある)
  • 「The most advanced VLM (GPT-4V) still performs poorly on Spider2-V (achieving 14.0% success rate), rendering it a very challenging benchmark.」と最新モデルでもスコアはかなり悪い。
  • リポジトリはSpider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?

BM25S: Orders of magnitude faster lexical search via eager sparse scoring

LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement 

  • LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.3]
    事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。 LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。 GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
    論文  参考訳(メタデータ)   (Sat, 13 Jul 2024 07:36:49 GMT)
  • fine tuning用のデータを拡張していくフレームワークの提案。間違った部分に注目するアプローチでLlama-2-7Bを用いて有効性を検証とのこと。
  • リポジトリはGitHub – SqueezeAILab/LLM2LLM: [ACL 2024] LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement